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Abstract 
 

 Each year many undergraduate students finish 
their studies smoothly, however some students have 
difficulties in studying. They are retired, failed or 
dropped out of the university. It is worth to find the 
model for predicting the success of undergraduate 
students from their characteristics and educational 
backgrounds. This study compares the 
performances of two classifiers: Decision Tree 
(C4.5) and Bayesian Network in predicting the 
success of undergraduate students. Cross 
Validation and Hold-Out Method are applied for 
the model of evaluation. Further, Correct 
Percentage, True Positive Rate, False Positive 
Rate, Precision, Recall and F-Measure are used for 
measuring the prediction accuracy. Results show 
that Decision Tree (C4.5) has better precision and 
lower false positive rate than Bayesian Network in 
predicting student class. The model from this study 
can be applied in predicting student status and 
further used in helping students with tendency to 
dropped out. 
 
Key Words: Data Mining, Bayesian Network, 
Decision Tree (C4.5), Student Graduation 
 
1. Introduction 
 At present there are more educational 
competitions than before and the students have 
chances to choose their own ways of studying. 
Unfortunately, some students face the obstacle and 
this makes them be retired, failed or dropped out of 
the university. Thus, it is necessary to help them 
overcome the problems occurred. 

 As a result of the difficulties mentioned, the 
solution for the students who would like to 
graduate from the universities is to look for the 
methods of predicting the success from their 
characteristics and educational backgrounds. 
 Data mining technique is based on statistical 
analysis, it has been used in finding and describing 
structural patterns in data segmentatoin and  
predictions. This technique has been applied 
extensively in many industries including banking 
and finances, education, medical sciences and 
manufacturing. 
 Xenos [2] proposed Bayesian Network for 
modeling student behaviours in order to enable 
prediction, status assessment and decision-making. 
Accuracate and useful results can be obtained. 
 Garcia and et al. [3] evaluated Bayesian 
Network precision for representing and detecting 
students’ learning styles in a Web-based education 
system. The Bayesian Network could be estimated 
with high precision the categorizing students to pre 
defined dimensions. 
 Mukoolskunpibal and Kitisin [4] compared the 
efficiency of C4.5, ADTree and Naïve Bayes 
algorithms on international postal mail and 
packages on the prediction of concealed narcotics. 
Performance comparisons used Hold-Out and k-
fold cross-validation methods. Correct rate of 
ADTree algorithm is the best. 

Yingkuachat and et al. [5] proposed the 
prediction of education accomplishment by using 
data mining technique, the Bayesian Network. 
Result shows that Bayesian Network is able to 
determine important variables for the prediction of 
the result of education accomplishment and high 
prediction accuracy. 
 Yamansabideen and et al. [6] used data mining 
to develop of Customer Relationship Management 
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for the student, by using Decision Tree. Result can 
be used as decision supporting data to solve the 
problems concerning students who would be nearly 
eliminated. 
 Sun and Shenoy [7] used Bayesian Network for 
bankruptcy prediction based on a 10-fold cross-
validation. Result shown that the model’s 
performance is the best. 
 Hidekazu and et al. [8] used Decision Tree for 
estimating sentence types. The representative  
Decision Tree algorithm C4.5 was revised. The 
gain ratio criterion was changed, and the hill 
climbing method was replaced with a genetic 
algorithm. Result shown high accuracy 
performance. 
 Lee and et al. [9] used Decision Tree to develop 
a prediction model for success based on customer 
recognitions of service offerings in e-commerce. 
Result shown superior prediction accuracy. 
 Both Decision Tree and Bayesian Network 
seems to be good classifiers for the prediction of 
education industries especially students success. 
This paper presents a comparison of Decision Tree 
and Bayesian Network for prediction of 
undergraduate student’s graduation. The objective 
of this study is to identify the best fit classification 
algorithm for prediction of undergraduate students 
by comparing the two algorithms. 
 This paper is organized as follows. Section 2 is 
the theory of classification algorithms. Section 3 is 
the Cross-Validation. Section 4 is the Evaluate 
technique. Section 5 is the study framework. The 
experimental results are revealed in Section 6. The 
last section is about Conclusions and Future work. 
  
2. Classification algorithm 
 
2.1 Bayesian Network 
 A Bayesian Network is a specific type of 
graphical model which is a directed acyclic graph. 
That is, all of the edges in the graph are directed 
and there are no cycles. A Bayesian Network can 
be used to compute the conditional probability of 
one node, given values assigned to the other nodes. 
A Bayesian Network can be used as a classifier that 
gives the posterior probability distribution of the 
class node given the values of other attributes. 
 

 
Figure 1. Example of Bayesian Network. 

  
 Figure 1. illustrates a Bayesian Network. Its set 
of edges is E={(B,A),(B,C)}. The edges in the 
Bayesian Network encode a particular factorization 
of the joint distribution. In this example, the joint 
distribution of all the variables, as factorized by 
this Bayesian Network, is 

)|()()|(),,( BCPBPBAPCBAP ••=   (1) 
 A Bayesian Network is a carrier of the 
conditional independencies of a set of variables, not 
of their causal connections. However, causal 
relations can be modeled by the closely related 
causal Bayesian Network. 
 

 
Figure 2. Bayesian Network in pseudo-code. 

 
2.2 Decision Tree 
 A Decision Tree is a tree in which each branch 
node represents a choice between a number of 
alternatives, and each leaf node represents a 
classification or decision. C4.5 is extension of the 
basic ID3 algorithm in figure 3. designed by 
Quinlan. 
  

A

B 

C

Assume for simplicity that no nodes are evidence 
nodes: 
1 Generate initial values for all nodes in the net 
2 Repeat until have enough data { 
 2.1 For each node X { 
    2.1.1 Throw away the current value for X 
    2.1.2 Generate a new value for X according 
    to the probability distribution over X 
    conditional on the values currently 
    given to the other nodes 
 } 
 2.2 record current values for all nodes of  
  interest 
} 
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Figure 3. Example of Decision Tree. 

 
 Fig. 3. illustrates a Decision Tree. It’s a tree 
whose internal nodes are tests: T1...T6, whose leaf 
nodes are categories. A Decision Tree assigns a 
class number to an input pattern by filtering the 
pattern down through the tests in the tree. 
 Various Decision Tree algorithms such as 
CHAID, C4.5/C5.0, CART, etc., produce trees that 
are different from one another in the following 
ways: how many splits are allowed at each level of 
the tree, how those splits are chosen when the tree 
is built, and how the tree growth is limited to 
prevent over-fitting. 
   

 
Figure 4. ID3 Decision Tree in pseudo-code. 

 

 C4.5 builds Decision Tree from a set of training 
data in the same way as ID3, using the concept of 
Information Entropy. C4.5 uses the fact that each 
attribute of the data can be used to make a decision 
that splits the data into smaller subsets. C4.5 
examines the normalized Information Gain that 
results from choosing an attribute for splitting the 
data. The attribute with the highest normalized 
information gain is the one used to make the 
decision. 
 In order to define information gain precisely, we 
need to define a measure commonly used in 
information theory, called entropy, that 
characterizes the purity of an arbitrary collection of 
examples. Given a set S, containing only positive 
and negative examples of some target concept: two 
class problem, the entropy of set S relative to this 
simple, binary classification is defined as: 

nnpp ppppSEntropy 22 loglog)( −−=  (2) 
 Where pp is the proportion of positive examples 
   pn  is the proportion of negative examples 
 Given entropy as a measure of the impurity in a 
collection of training examples, we can now define 
a measure of the effectiveness of an attribute in 
classifying the training data. The measure we will 
use, called information gain, is simply the expected 
reduction in entropy caused by partitioning the 
examples according to this attribute. More 
precisely, the information gain, Gain(S, A) of and 
attribute A, relative to a collection of examples S, 
is defined as 

)()(),(
)(

v
AValuev

v SEntropy
S
S

SEntropyASGain ∑
∈

−= (3) 

 Where A is the set of all possible values 
   Sv is the subset of S for which attribute A 
 
3. Cross-validation 
 Cross validation is a model evaluation method 
that is better. Some of the data is removed before 
training begins. Then when training is done, the 
data that was removed can be used to test the 
performance of the learned model. 
 The holdout method is the simplest kind of cross 
validation. The data set is separated into two sets, 
called the training set and the testing set. The 
function approximator fits a function using the 
training set only. Then the function approximator is 
asked to predict the output values for the data in the 
testing set.  
 
4. Evaluation 
 To evaluate classifiers used in this work, we 
apply a range of standard reference metrics defined 
as follow: 

3 
1 1 2 3 

3 2 2 

T1 

T2 T3 

T5 T6 

T4 

1 

Input: A data set, S 
Output: A Decision Tree 
 If all the instances have the same value for the  
 target attribute then return a decision tree that 
 is simply this value 
 Else 
    1. Compute Gain values for all attributes 
   and select an attribute with the lowest 
   value and create a node for that attribute.  
    2. make a branch from this node for every 
   value of the attribute. 
    3. assign all possible values of the attribute 
   to branches. 
    4. follow each branch by partitioning the 
   dataset to be only instances whereby the 
   value of the branch is present and then 
   go back to 1.     
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Table 1. Different outcomes of a two-class 
prediction. 

                                              Predicted class 
                                           Yes No 

Yes True 
positive 

False 
negative 

Actual 
class 

No False 
positive 

True 
negative 

 
 In table 1. True Positive (TP) and True Negative 
(TN) are correct classification. A False Positive 
(FP) occurs when the outcomes is incorrectly 
predicted as yes (or positive) when it is actually no 
(negative). A False Negative (FN) occurs when the 
outcomes is incorrectly predicted as negative where 
it is actually positive.  
 Correct Percentage is the number of correct 
classifications divided by the total number of 
classifications: 

        
FNFPTNTP

TNTP
+++

+
                (4) 

 True Positive Rate is TP divided by the total 
number of positives, which is TP+TN. 
 False Positive Rate is FP divided by the total 
numbers of negative, FP+TN. 
 Precision is number of documents relevant and 
retrieved divided by total number of documents 
that are retrieved. 
 Recall is number of documents relevant and 
retrieved divided by total number of documents 
that are relevant. 
 F-Measure is evaluated classification 
performance based on precision and recall. 

     
FNFPTP

TPF
++

=
*2

*2
                 (5) 

 
5. Study framework 
 
5.1 Data pre-processing 
 Data pre-processing is an important process 
because in real world data are generally: 
incomplete, noisy and inconsistent. 
Tasks in data preprocessing process consists of two 
step 
 1. Data cleaning: Fill in missing values and 
identify outliers and smooth out noisy data. 
 2. Data Transformation: Normalization, 
aggregation, generalization and attribute 
construction. 
 

 
Figure 5. Study framework. 

 
5.2 Classification 
 Classification is the prediction of nominal 
values. It was decided to concentrate on an 
algorithm for generating two classification 
algorithms: Decision Tree (C4.5 algorithm) and 
Bayesian Network. 
 
5.3 Evaluation 
 There are six measurements used in this study: 
Correct Percentage, True positive rate, False 
positive rate, Precision, Recall and F-measure. 
 
6. Experimental 
 In this section, we compare two classification 
algorithms such as Decision Tree (C4.5) and 
Bayesian Network by using Hold-out cross-
validation. In the results of experiment of each 
algorithm are showed in Fig. 6. to 11. The 
performance measurements are Correct Percentage, 
True Positive Rate, False Positive Rate, Precision, 
Recall and F-Measure. 
 
6.1 The dataset 
 All data used in this experiment are collected 
from undergraduate students is one private 
university in Thailand. The status of students can 
be classified by status learning. The dataset are 
grouped into six classes. The input data set used in 
the Waikato Environment for Knowledge Analysis 
(WEKA) program, it has format extension “.arff” 
file. In Table 2. shows six classes of students status. 
The dataset has 35 nominal attributes as shown in 
Table 3, There are 20,914 instances, and as 
indicated in six classes. 

 
 

STD 
DB 

Data Pre-processing 

Decision Tree 
(C4.5) 

Bayesian 
Network 

Classification Algorithm 

Evaluation 

- 149 -



Table 2. Classes of student status. 
Class Description 

S Normal 
G Graduated 
T Retired 
R Resign 
Q Lost Contact 
L Take Leave 

 
Table 3. Attribute of dataset. 

Attribute Names Description 
Sex Sex 
Zone_id Curriculum 
Round_id Type of study 
Spc_id Scholarship 
Nationality_id Student’s nationality 
Religion_id Student’s religion 
Region_sch Previous school region 
Region_address Student address region 
Fac_id Faculty 
Edulevel_id Qualification for admission 
Ent_id Type of enrollment 
Cert_grade_id Grade for admission 
Fth_income_id Father’s income 
Mth_income_id Mother’s income 
Fth_occ_id Father’s occupation 
Mth_occ_id Mother’s occupation 
Dept_id Student’s department 
F_gpa_id First semester’s GPA 
S_gpa_id Second semester’s GPA 
Age_id Student’s age 
Str_yr Year of admission 
Str_sem Semester of admission 
Extrac_id Student’s extraction  
Total_grade_F Total grade F 
Total_grade_A Total grade A 
Total_grade_B_P Total grade B Plus 
Total_grade_B Total grade B 
Total_grade_C_P Total grade C Plus 
Total_grade_C Total grade C 
Total_grade_D_P Total grade D Plus 
Total_grade_D Total grade D 
Total_course_regis Total course registration 
Total_credit_all Total credit registration 
Total_credit_get Total credit pass 
Std_status Student’s status 

 
6.2 Result 
 Fig. 6. shows correct percentage of two 
algorithm, C4.5 has the highest correct percentage 
value (85%) which can be implied that it is the 
most accuracy. 

Correct percentage in C4.5 algorithm of Hold-
out method Cross-Validation in range 40 – 90 % is 

highest correct percentage value which can be 
implied that more training set make enhance 
highest accuracy. 

Correct Percentage
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Figure 6. Comparison percentage of Bayesian 
Network and Decision Tree (C4.5) in correct 
percentage. 
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 Figure 7. Comparison rate of Bayesian Network 
and Decision Tree (C4.5) in true positive rate. 

 
 Fig. 7. shows true positive rate of two algorithm, 
C4.5 has highest true positive rate (0.94) which can 
be implied that it is the most prediction accuracy. 
True positive rate in Hold-out method Cross-
Validation in C4.5 and Bayesian Network do not 
have more effect on true positive rate accuracy. 
 Fig. 8. shows false positive rate of two 
algorithm, C4.5 has lowest false prediction value 
(0.05) which can be implied that it is the most 
prediction accuracy. 
 In 10 % of Hold-out method Cross-Validation 
C4.5 has highest false prediction value (0.083) and 
Bayesian Network has lowest false prediction value 
(0.073). 
 More than 10 % of Hold-out method Cross-
Validation C4.5 has lowest false prediction value 
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and Bayesian Network has highest false prediction 
value which can be implied that more training set 
make enhance accuracy. 
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 Figure 8. Comparison rate of Bayesian Network 
and Decision Tree (C4.5) in false positive rate. 
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 Figure 9. Comparison rate of Bayesian Network 
and Decision Tree (C4.5) in precision. 
 
 Fig. 9. shows precision of two algorithm, C4.5 
has highest precision (0.93) which can be implied 
that it is the most true prediction accuracy. 
 In 10 % of Hold-out method Cross-Validation 
C4.5 and Bayesian Network has lowest precision. 
In more than 10 % C4.5 has highest precision and 
Bayesian Network has still lowest precision. 
 Fig. 10. shows recall of two algorithm, C4.5 has 
highest recall (0.9) which can be implied that it is 
the most prediction accuracy. 
 Hold-out method Cross-Validation do not have 
more effect on recall accuracy in C4.5 and 
Bayesian Network. 
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 Figure 10. Comparison rate of Bayesian 
Network and Decision Tree (C4.5) in recall. 
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 Figure 11. Comparison rate of Bayesian 
Network and Decision Tree (C4.5) in F-

Measure. 
  
 Fig. 11. shows F-Measure of two algorithm, 
C4.5 has highest F-Measure value (0.95) which can 
be implied that it is the most accuracy. 
 In C4.5 and Bayesian Network Hold-out method 
Cross-Validation at 10 % has lowest F-Measure. 
More than 10 % in C4.5 has highest F-Measure and 
more than 30 % in Bayesian Network has highest 
F-Measure.  
 
7. Conclusions and future work 
 This paper proposes a comparison of two 
algorithms for prediction undergraduate student 
success. In this study, we use Decision Tree (C4.5) 
and Bayesian Network in practical experiments 
with Hold-out cross-validation. The prediction 
performances of two classifiers are measured by six 
indices used for evaluating the efficiency of 
classification. The indices include Correct 
Percentage, True Positive rate, False Positive rate, 
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Precision, Recall and F-Measure. In the prediction 
accuracy, Decision Tree (C4.5) is higher than 
Bayesian Network, and error rate prediction 
Decision Tree (C4.5) has the smaller numbers. The 
university office can use Decision Tree to build the 
model in order to predict the success of 
undergraduate students. This model will be helpful 
in guiding problematic students to overcome the 
difficulties in their studies. 
 Our future work is applying data mining 
technique for prediction. In order to increase the 
prediction power of classification, alternative 
feature selection such as Genetic Algorithm might 
be apply to select importance attributes before 
classification. 
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